Multiple Branch and Block Prediction
نویسندگان
چکیده
Accurate branch prediction and instruction fetch prediction of a microprocessor are critical to achieve high performance. For a processor which fetches and executes multiple instructions per cycle, an accurate and high bandwidth instruction fetching mechanism becomes increasingly important to performance. Unfortunately, the relatively small basic block size exhibited in many general-purpose applications severely limits instruction fetching. In order to achieve a high fetching rate for wide-issue superscalars, a scalable method to predict multiple branches per block of sequential instructions is presented. Its accuracy is equivalent to a scalar two-level adaptive prediction. Also, to overcome the limitation imposed by control transfers, a scalable method to predict multiple blocks is presented. As a result, a two block, multiple branch prediction mechanism for a block width of 8 instructions achieves an effective fetching rate of 8 instructions per cycle on the SPEC95 benchmark suite.
منابع مشابه
Improving Multiple-block Prediction in the Block-based Trace Cache
Multiple-block prediction is emerging as a new and exciting research area. Highly accurate multiple-block predictors are essential for wide instruction fetch mechanisms, that will support future generations of microprocessors. The block-based trace cache is a recent proposal for wide instruction fetch. It aligns and stores instructions at the basic block level instead of at the trace level, thu...
متن کاملMultiple - Block Ahead
A basic rule in computer architecture is that a processor cannot execute an application faster than it fetches its instructions. This paper presents a novel cost-eeective mechanism called the two-block ahead branch predictor. Information from the current instruction block is not used for predicting the address of the next instruction block, but rather for predicting the block following the next...
متن کاملBlock - Level Prediction for Wide - Issue Superscalar Processors
Changes in control ow, caused primarily by conditional branches, are a prime impediment to the performance of wide-issue superscalar processors. This paper investigates a block-level prediction scheme to mitigate the e ects of control ow changes caused by conditional branches. Instead of predicting the outcome of each conditional branch individually, this scheme predicts the target of a sequent...
متن کاملBlock Based Fetch Engine for Superscalar Processors
The implementation of modern high performance computer is increasingly directed toward parallelism in the hardware. However, most of the current fetch units are limited to one branch prediction per cycle and therefore, can fetch no more than one basic block per cycle. While fetching a single basic block each cycle is sufficient for implementations that issue small number of instructions per cyc...
متن کاملThe Benefit of Multiple Branch Prediction on Dynamically Scheduled Systems*
Providing instructions for wide-issue systems is a challenge because the execution path must be predicted before branches are even decoded. Since basic blocks can easily be smaller than the issue width of near future systems multiple branch prediction is important. An early solution to the problem is the multiple branch predictor (MBP) of Yeh, Marr, and Patt. A PC-indexed branch address cache (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997